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Abstract

In this paper we present a hybrid deterministic/Monte Carlo algorithm for
computing the dominant eigenvalue/eigenvector pair for the neutron trans-
port k-eigenvalue problem in multiple space dimensions. We begin by deriv-
ing the Nonlinear Diffusion Acceleration method [2, 5] for the k-eigenvalue
problem. We demonstrate that we can adapt the algorithm to utilize a
Monte Carlo simulation in place of a deterministic transport sweep. We then
show that the new hybrid method can be used to solve a two-group, two-
dimensional eigenvalue problem. The hybrid method is competitive with
analog Monte Carlo in terms of the number of particle flights required to
compute the eigenvalue, however it produces a much less noisy eigenvector
and fission source distribution. Furthermore, we show that we can reduce
error induced by the discretization of the low-order system by an appropriate
refinement of the mesh.
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1. Introduction

In recent years, the use and understanding of Moment-Based Acceleration
techniques (MBAs) has increased dramatically for the solution the transport
problems [2, 3, 4, 5, 11]. These accelerations use a consistent system of mo-
ment equations to accelerate the solution to the original transport problem.
These methods have been extended for the solution of the neutron transport
k-eigenvalue problem and have been shown to be extremely efficient. On the
other hand, an active area of research in the neutron transport community
is the use of hybrid deterministic/Monte Carlo methods for the solution of
the neutron transport equation [9, 8, 7, 3, 4, 11]. The idea with these hybrid
methods is to remove all sources of discretization error while simultaneously
accelerating the Monte Carlo simulation. While the authors of [7] seek to
only accelerate the convergence of the fission source, our algorithm simulta-
neously attempts to accelerate both the scattering and fission sources. Purely
deterministic methods suffer from spatial discretization error, ray effects and
errors in reaction rates from incorporating the multi-group approximation.
In addition, Monte Carlo methods are generally highly parallelizable which
makes them strong candidates for efficient implementation on current and
emerging computer architectures.

In this paper, we demonstrate that we can modify a Nonlinear Diffusion
Acceleration (NDA) based method to use a Monte Carlo transport sweep.
We derive the method and discuss the theoretical benefits of using a Monte
Carlo transport sweep to solve the k-eigenvalue problem in multiple dimen-
sions [11]. At this point, we discuss relevant details of the implementation
and demonstrate the new method on 2-group, 2-D eigenvalue problem. To
conclude we provide a head-to-head comparison of the hybrid method against
an analog Monte Carlo implementation, before discussing the advantages and
disadvantages of using the hybrid algorithm.

2. Nonlinear Diffusion Acceleration for the Transport Criticality
Problem

We are interested in solving the multi-group formulation of the neutron
transport eigenvalue problem with isotropic scattering,
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in which 1, is the group angular flux and ¢, = |, i ¢gdf2 is the group scalar
flux for groups g = 1,...,G. Xy, 3979 and Y4 are the total, in scattering
and fission cross-sections for group g, respectively. Furthermore, x, denotes
the multi-group fission spectrum, v is the mean number of neutrons emitted
per fission event and k.s; is the dominant eigenvalue.

In order to simplify future discussion, we’ll represent the eigenvalue prob-
lem (Eq. 1) in operator notation,
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L = Q- V43,
S = X,
F = xviy.

In this setting, ¥ and ® represent vectors of group angular and scalar
fluxes, respectively,

U = [Y1,99,...,9%q],
d = [¢1,02,...,0¢].

2.1. Derwing the NDA Low-Order Equation
As in [2, 3, 4, 5, 11, 12], we begin by computing the zeroth angular
moment of Equation 1,
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in which the current, J is defined as the first angular moment,

A
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We refer to Equation 2 as the neutron balance equation. Asin [2, 3, 4, 5, 11,
12], we use a Fick’s law plus drift term closure relationship for the current,

Jy = —==—Vo¢, + Dyo,. (4)



Substituting Equation 4 into Equation 2 yields the NDA low-order sys-
tem,
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The consistency term ﬁg is computed using high-order quantities of the
scalar flux, qﬁfo, and current, Jf O via

THO 1 HO
s Tt g Ve

3%t
g ¢£]’-[O : (6)

These high-order moments are computed directly via integration of the high-

order angular flux, which is the results of a single high-order transport sweep.
That is,
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We will express Equation 5 in operator notation as well,
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2.2. NDA-Based Figenvalue Methods

When we apply NDA to the neutron transport k-eigenvalue problem
2, 5] it yields a set of algorithms in which we alternate between executing
high-order transport sweeps and solving the low-order eigenvalue problem
(Equation 5). These methods differ only in the way in which the low-order
eigenvalue problem is solved. We have described the methods formally in
Algorithm 1

Algorithm 1 NDA

Nonlinear Diffusion Acceleration

Compute initial iterate @ initial eigenvalue approximation k°. Set iter-
ation counter m = 0.
while |[£™ — k™| > 7 do

Update counter, m = m + 1.

Execute transport sweep and compute new consistency term
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Solve the low-order eigenvalue problem for ®™ and k™

1
(D™ — Sy —Sp) @™ = Wﬂp(m). (12)

end while

We generally choose to solve the low-order eigenvalue problem using New-
ton’s method, which is known as the NDA-NCA method for computing the
dominant eigenvalue [5, 3, 11, 12]. For the purpose of this paper, we will
not concern ourselves with details regarding the solution to the low-order
eigenvalue problem. For a more in-depth treatment of the solution to the
low-order eigenvalue problem, see [12].



3. Hybrid NDA-NCA

Up until this point, we have not specified a spatial or angular discretiza-
tion for the high-order problem. This was done intentionally to demonstrate
that it is unnecessary to use a deterministic transport sweep. When these
algorithms were originally formulated, .S,, quadratures were used alongside
a step characteristics or linear-discontinuous Galerkin spatial discretization.
However, in this paper, we utilize a “Monte Carlo transport sweep” to recover
®HO and JHO. This sweep is described in Algorithm 2.

Algorithm 2 Monte Carlo Transport Sweep
Monte Carlo Transport Sweep

Input current approximation to the scalar flux, (™=,

Build a scattering and fission-free fixed source problem:
LV =Q (13)

in which

1 1
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Solve Equation 13 via Monte Carlo simulation to recover ®#¢ and JHO,

It is important to note the difference between the Monte Carlo transport
sweep described in Algorithm 2 and a standard Monte Carlo simulation.
In a standard Monte Carlo simulation, we must simulate the entire life of a
neutron, including scattering, absorption, streaming, fission, etc. However, in
the Monte Carlo transport sweep, the simulation is used to solve a scattering-
and fission-free problem. Each particle is born at a specific location, streams
some distance and is immediately absorbed at the first interaction location.
The fact that each neutron undergoes a single particle flight makes the Monte
Carlo transport sweep far less expensive to execute and minimizes the logic
involved in simulating the particle history [3, 4].

4. Implementation

In this section we discuss the relevant details of the implementation of

the hybrid NDA-NCA algorithm (NDA-NCA(MC)). For each problem, we
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choose our initial iterate by solving the diffusion eigenvalue problem for ¢
and k. For the problems we are interested in, this provides a much better
starting point than using a flat source.

It should be readily apparent to the reader that the accuracy of the sim-
ulation is related to the number of particles used in each Monte Carlo trans-
port sweep. It is well known, see [17], that the standard deviation in a Monte
Carlo simulation decreases proportional to LN in which N is the number of
particle histories. Therefore, we can increase the number of particles per
transport sweep until we have achieved the desired level of accuracy (or until
the computational costs become too burdensome). However, at early stages
of the iteration, the level of accuracy necessary to advance the iteration may
be significantly lower than at the terminal stage. Willert et. al. showed that
for fixed-source computations it is most efficient to begin with a relatively
small number of particles for the first iteration and increase the value by some
factor at each transport sweep [13]. Therefore, for these two-dimensional test
problems, we begin by using 10° particles per transport sweep and increase
this number by a factor of 2 at each iteration.

Also, as was previously mentioned, we utilize Newton’s method to solve
the low-order eigenvalue problem. We do this by nonlinearly eliminating the
eigenvalue,

F(®) = (D™ - Sy —8;) @ — @}Yb. (14)

in which
k(®) = /}"(I)dV.

This equation used for the elimination of k is justified using a proper nor-
malization,

[ Fotmay

1 f(m—1)

We precondition the Newton-Krylov iteration using the inverse of the opera-
tor M formed by evaluating k at the current approximation of the eigenvalue,

1



To ensure convergence, we employ a standard Newton’s method line-
search [1] as well as a “physics-based” line-search. We use our knowledge
of the positivity of the dominant eigenvector to demand that & remain
strictly positive everywhere in the domain. The combination of these two
line-searches allows us to converge to the dominant eigenpair without diffi-
culty. While we have no definitive theory which demands that this iteration
converge to the dominant eigenpair, we have yet to encounter a case in which
it does not.

It is also very important to note that this algorithm is highly scalable.
In Figure 1 we demonstrate the strong scaling of the algorithm using both
standard track length tallies and the more-efficient, balance-preserving con-
tinuous energy deposition (CED) tallies [3, 16]. Using standard track length
tallies we see a weak scaling efficiency of roughly 95% and using the CED Tal-
lies we demonstrate a weak scaling efficiency of nearly 99%. Furthermore,
Willert et. al. demonstrated the efficiency with which these Monte Carlo
transport sweeps could be implemented on general-purpose, graphical pro-
cessing units (GP-GPUs) for a similar problem [19].

The low-order problem is discretized using a finite-difference discretiza-
tion. At each iteration, the low-order problem provides a constant-cell source
from each cell to the Monte Carlo transport sweep. We acknowledge that
this may be a deficiency of the algorithm and will consider this as an area
of future work. By using a higher-order discretization or applying shape
functions within each cell, we may reduce the effects of the low-order dis-
cretization. For now, these discretization errors can be alleviated by refining
the low-order mesh. It is important to note, however, refining the mesh does
not effect the overall cost of the algorithm in a dramatic way. The cost
of the low-order solve increases slightly, but this increase is inconsequential
compared to the cost of the high-order Monte Carlo transport sweep.

5. Numerical Results

In Figure 2 we display the material layout for the LRA-BWR, problem
[14, 15]. This is a five-material problem in which materials 1 through 4
consist of fissionable material and material 5 is a reflector region.

As previously stated, the initial Monte Carlo transport sweep utilizes
10 particle histories and each subsequent sweep uses a factor of 2 times
the previous. We must recall that the low-order spatial mesh may bias the
solution due to the discretization error. For this reason, we will solve the
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Figure 1: The NDA-NCA(MC) algorithm is highly scalable.

problem on a series of meshes in order to demonstrate that we should be
able to compute the true eigenvalue using the appropriate level of mesh
refinement.

For this problem, we have computed a reference eigenvalue k,.; = 1.00144
using an analog Monte Carlo simulation. On a 165 x 165 mesh using an
S16 quadrature, the deterministic method computes kg; = .99896 using a
step-characteristics discretization. On the same low-order spatial mesh, the
hybrid method computes kp,, = 1.00022. Clearly, both the deterministic
method and hybrid method have some level of discretization error. With
the deterministic method, this error comes in the form of both spatial trun-
cation error and angular discretization error. With the hybrid method this
error comes only from the discretization error of the low-order problem. The
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Figure 2: The material layout for the LRA-BWR, 2-group eigenvalue problem.

low-order problem provides a scalar flux for transport sweep in the next it-
eration and a flat source is assumed in each cell. By assigning some shape to
the source term, we hypothesize that we can at least partially remedy this
error. Furthermore, in one spatial dimension, Willert showed that refining
the spatial mesh allowed the user to quickly make the low-order discretiza-
tion error smaller than the noise in the Monte Carlo simulation [3]. Not only
can we notice a difference in the eigenvalue, but there is a noticeable dif-
ference between the deterministically computed eigenvector and the hybrid
eigenvector, as displayed in Figure 3.

Table 1 lists the computed eigenvalue, hybrid and deterministic, and the
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Figure 3: On the left we plot the eigenvector computed using the hybrid method. On the
right we plot the relative difference between the hybrid and deterministic eigenvectors.

error compared to the analog Monte Carlo reference solution for a series of
low-order spatial meshes. As we can clearly see, the error decreases as the
mesh is refined. It is also important to note that the same number of particles
are used in each simulation, regardless of the spatial mesh size.

We do notice, however, that the fission source distribution that is com-
puted by the analog Monte Carlo simulation is far noisier than the fission
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Table 1: Mesh Dependence of k-Eigenvalue for NDA-NCA(MC)

Mesh Cell Width | Hyb. k.ss | Det. kcss | Hyb. Error | Det. Error
88 x 8 | h=1875 | 0.97816 0.97739 | 2.328E-02 | 2.405E-02
165 x 165 | h = 1.000 1.00022 0.99896 | 1.220E-03 | 2.480E-03
220 x 220 | h = 0.750 1.00059 0.99973 | 8.500E-04 | 1.710E-03
330 x 330 | A =0.500 1.00076 1.00041 | 6.800E-04 | 1.030E-03

source distribution computed via NDA-NCA(MC). This makes sense - ana-
log Monte Carlo utilizes a very discrete method of tallying the fission source.
Particles only contribute to the fission source tally if a fission interaction
takes place in a given cell. On the other hand, within the NDA-NCA(MC)
transport sweep, particles contribute to the scalar flux in each cell that they
pass through. The comparison between these to quantities can be seen in
Figure 4.

The convergence of the eigenvalue, eigenvector, low-order nonlinear resid-
ual and the Shannon entropy [18] can be visualized in Figure 5. After 15
iterations each sweep requires a total of roughly 2.5 x 10'? particle flights.

We can also analyze the convergence of the analog Monte Carlo calcula-
tion of the eigenvalue in Figure 6. As we can see, it requires at least 2000
active cycles to converge the eigenvalue to a relative tolerance of 107°. Each
cycle utilizes 2 x 107 particles, each of which undergoes roughly 25 particle
flights on average.

The NDA-NCA(MC) algorithm converges on the first five digits of the
eigenvalue (compared to reference NDA-NCA(MC) solution) after roughly
6.4 x 109 particle flights. The analog Monte Carlo algorithm required about
1 x 10'2 particle flights to achieve the same degree of convergence. Its impor-
tant to note that the with the hybrid algorithm we have a much better mech-
anism for terminating the simulation. With the NDA-NCA(MC) algorithm
we can use the low-order nonlinear residual, the change in the eigenvalue, the
change in the eigenvector or the Shannon entropy as a convergence metric.
While all of these quantities (aside from the low-order nonlinear residual)
can be computed during the analog Monte Carlo simulation, we are more
likely to encounter a false convergence event. At later stages in the analog
Monte Carlo simulation, all of these values will be slowly changing, as they
are computed via a running-average over active cycles.

12



Analog Monte Carlo Fission Source

NDA-NCA (MC) Fission Source

, SRS
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Figure 4: On the top we plot the fission source distribution computed using the ana-
log Monte Carlo simulation. On the bottom we see the much less noisy fission source
distribution computed using NDA-NCA (MC).
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Figure 5: Convergence plots for NDA-NCA(MC) for the LRA-BWR, problem.

6. Algorithmic Considerations

It is important to include a brief discussion on some of the more subtle
differences between the analog Monte Carlo algorithm and the hybrid NDA-
NCA(MC) algorithm. First of all, within the analog Monte Carlo algorithm
all neutrons are born in the fissionable region. This is not the case when
using the NDA-NCA (MC) algorithm; in this case, Monte Carlo particles are
born everywhere throughout the domain to ensure adequate statistics for the
scalar flux and current, which must be computed throughout the domain.
This constitutes a major difference for a problem like the LRA-BWR test
configuration. For this problem, roughly 65% of the cells contain fissionable
material. This implies that the analog Monte Carlo algorithm gets to focus
its generation of particles in a much smaller fraction of the domain. In
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Figure 6: Convergence plot of the analog Monte Carlo simulation.

some sense, NDA-NCA(MC) is less efficient as particles must be distributed
everywhere. On the other hand, analog Monte Carlo particles are inefficient
as they only contribute to the fission source tally if they induce a fission
event. NDA-NCA(MC) particles contribute to every cell and cell face which
they cross as they stream from their birthplace to absorption location.

In the initial implementation of the NDA-NCA(MC) algorithm we chose
a uniform distribution of particles throughout the spatial domain. We have
proposed two methods for improving the algorithm by concentrating more
particles in the fissionable area of the domain. We have implemented a non-
uniform source which bases the number of particles in each cell on the relative
source strength of that cell. This is a simple adaptation and does not intro-
duce any additional sources of error, aside for the potential to achieve poor
statistics in certain regions. Unfortunately, the difference in computational
effort between the uniform and non-uniform particle source locations does
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not appear to be significant. The second of these methods would involve a
geometric hybrid in which the reflector region scalar flux and current would
be computed using a deterministic algorithm. We leave this as an area of fu-
ture work. This method has many appealing features, however may introduce
new sources of difficult to quantify error.

7. Conclusion

We have developed a hybrid deterministic/Monte Carlo algorithm for
solving the multi-group k-eigenvalue problem in multiple space dimensions.
We have demonstrated the convergence of NDA-NCA(MC) for a 2-D, 2-
group test problem and demonstrated that the hybrid method achieves more
accurate results than the purely deterministic algorithm, however there is still
some degree of low-order discretization error which corrupts the converged
eigenvalue. Future work should consider higher-order discretization schemes
for solving the consistent low-order diffusion eigenvalue problem in order to
decrease the amount of error contributed from the low-order problem and
should provide non-uniform cell-sources to the high-order problem.

Furthermore, we have demonstrated that the hybrid algorithm achieves
a similar convergence rate of the eigenvalue in terms of total particle flights.
However, we have also seen that the hybrid algorithm produces a far less noisy
eigenvector and fission source distribution. If the fission source distribution is
of high interest, using the hybrid algorithm may be a superior choice. Future
work will involve adapting the NDA-NCA(MC) algorithm to utilize particle
histories more efficiently.
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